COGNITIVE CORRELATES OF NARRATIVE LENGTH, COMPLETENESS, AND ELABORATION FOLLOWING SEVERE TBI

Kathryn J. Greenslade, Ph.D., CCC-SLP (presenting author) Serena Jaskolka, M.S., CF-SLP (author only) Elise Elbourn, Ph.D. (author only) Amy E. Ramage, Ph.D., CCC-SLP (author only)

1

STORYTELLING / NARRATIVE DISCOURSE

- Narrative discourse involves telling a story through a series of causally connected, logically sequenced events
- Difficulty with narrative discourse is common in people with traumatic brain injury (TBI) 1,2,3

"Tell us again, Grandpa, about the time you almost had Tarzan for lunch."

 $^{\rm 1}$ Coelho, 2002; $^{\rm 2}$ Marini et al., 2017; $^{\rm 3}$ Stout et al., 2000

IMPORTANCE OF NARRATIVE DISCOURSE IMPAIRMENTS IN TBI

- Essential for social participation
- Correlates with community reintegration / psychosocial outcomes 4,5
- May be more strongly correlated with social integration than demographic variables ⁴

⁴ Galski et al., 1998; ⁵ Elbourn, Kenney, Power, & Togher, 2019

3

STORY GRAMMAR

Story grammar ⁶ is a framework used in Western narratives to organize content in a predictable, linear event sequence.

⁶ Stein & Glenn, 1975

Л

TBI & NARRATIVE MACROLINGUISTIC ANALYSIS

- Previous TBI research has addressed:
 - ❖ Narrative length ^{7,8}
 - **❖ Completeness of content** 9, 10
 - **❖ Local/global coherence** 9,11,12
 - Relationships between these measures and deficits in executive functions (EF) and declarative memory 12, 13

⁷ Hartley & Jensen, 1991; ⁸ Norman et al., 2022; ⁹ Carlomango et al., 2011; ¹⁰ Elbourn, Kenney, Power, Honan, et al., 2019; ¹¹ Marini et al., 2011; ¹² Marini et al., 2014; ¹³ Mozeiko et al., 2011

5

TBI & NARRATIVE MACROLINGUISTIC ANALYSIS

- Minimal TBI research addresses:
 - Completeness of narratives (in terms of story grammar; SG)
 - Elaboration of narratives
 - Cognitive correlates of SG measures
 - Relationships between deficits in narrative discourse, EF, & declarative memory across different timepoints in TBI recovery

RESEARCH QUESTIONS

Do story grammar measures related to length, elaboration, & completeness at 6- & 12-months post-TBI correlate with EF & declarative memory at 6- & 12-months post-TBI?

7

PARTICIPANTS

	Sex	Age (years)	Years of	GCS Score	Length of	Primary	Monolingual
	(M:F)		Education		PTA (days)	Language	
Total	44:10	34.981	13.722	6.741	53.463	49 English	43 Monolingual
sample		(± 13.369)	(± 2.993)	(± 3.454)	(±39.887)	5 Other	11 Other (8
(N=54)		16-66	8-20	3-15	6-215		Bilingual, 3
							Multilingual)

EXAMPLE EPISODE

42so she got close to twelve o'clock.	IE	3	
43it was time for her to leave.	IE	3	
44and she &+b basically ran away from the [/] the prince.	A	3	
45and <left her="" shoe=""> [//] lost her shoe on the way back</left>	DC	3	
that the 46prince then found .	DC	3	Ep3: EC- MB

IE = Initiating Event
A = Attempt
DC = Direct Consequence

14

STORY GRAMMAR MEASURES

Total number of story grammar elements (length)

Total number of episodes (length)

Total number of elaborated complete episodes (episodic completeness/elaboration)

Number of story grammar elements per episode (elaboration)

COGNITIVE MEASURES

EF MEASURE:

Functional Assessment of Verbal Reasoning and Executive Strategies (FAVRES)¹⁵

DECLARATIVE MEMORY MEASURES:

Hopkins Verbal Learning Test - Revised (HVLT-R)¹⁶

Brief Visuospatial Memory Test - Revised (BVMT-R)¹⁷

¹⁵ MacDonald, 2005; ¹⁶ Brandt & Benedict, 1997; ¹⁷ Benedict, 1997

16

ANALYSES:

Spearman's correlations were run between each narrative variable at 6- and 12-months:

- Number of story grammar elements
- Number of episodes
- Number of elaborated complete episodes
- Number of episodic elements per episode

And each Executive Functioning and Declarative Memory score at 6- and 12-months:

- FAVRES (Executive functioning): Scheduling Accuracy, Scheduling Rationale, Building Cases Accuracy, Building Cases Rationale, Total Accuracy, Total Rationale, Total Reasoning
- HVLT & BVMT (Declarative memory)

RFSIIIT	S- STORY	GRAMMAI	₹ & FF
ILLJULI). JIUNI	VINAMINA	\ C LI

	SG 6-months				SG 12-months				
	Number of SG elements	Number of episodes	Number of EC episodes	Number of SG elements per episode	Number of SG elements	Number of episodes	Number of EC episodes	Number of SG elements per episode	
	Building a		Building a	Scheduling					
	Case		Case	Accuracy*;					
EF 6-	Accuracy*		Accuracy* Total Rationale*						
months	Total	Total	Total	Total	Total	Total			
	Reasoning Raw*	Reasoning Raw*	Reasoning Raw**	Reasoning Raw*	Reasoning Raw*	Reasoning Raw**			
		Scheduling Accuracy*			Scheduling Accuracy*	Building a Case			
EF 12-		Building a Case Accuracy*			Building a Case Accuracy*	Accuracy*			
months		, iccuracy		Total	, iccuracy				
				Reasoning Raw*					

* $p \le .01$; ** $p \le .001$

18

WHAT CAUSAL REASONING LOOKS LIKE

Example A

one day that the king sent out a notice to every household noticing them to join the ball for his prince that for a potential wife .	IE	1	
all the girls are very excited as_well_as			
Cinderella .	MS	1	
&+a as soon as when she dressed up nicely	A	1	
and tried to go to the ball	Α	1	
the [/] &+mo the older women along [/] along with her two 38daughters didn't want her to go.	MS/DC	1	
because she looked much better than they would .	MS/DC	1	
and thought that if she goes	MS/DC	1	
they would have no chance of charming the prince	MS/DC	1	
so they locked her up in the room	DC	1	
			Ep1: EC-
and left for the ball .	DC	1	MB, MS

Example B

&-um she went to the ball			
and her two sisters .	ΙE	1	Ep1: SI
and her mother wouldn't			
let her go for some			
reason.	ΙE	2	Ep2: SI
and then the two sisters			
&-um attacked her .	Α	3	
and she runs out .	DC	3	Ep3: SI

MS = Mental State IE = Initiating Event

A = Attempt

DC = Direct Consequence

RESULTS: SG & DECLARATIVE MEMORY

			SG		SG				
		6-m	onths			12-	months		
	Number of SG elements	Number of episodes	Number of EC episodes	Number of SG elements per episode	Number of SG elements	Number of episodes	Number of EC episodes	Number of SG elements per episode	
Declarative memory	HVLT-R*	HVLT-R*		N/A		HVLT-R**		N/A	
6-months	BVMT-R**	BVMT-R*	BVMT-R*		BVMT-R*	BVMT-R**			
Declarative memory	HVLT-R**	HVLT-R**	HVLT-R**	N/A	HVLT-R*	HVLT-R**	HVLT-R*	N/A	
12-months	BVMT-R**	BVMT-R**	BVMT-R*		BVMT-R*	BVMT-R**			
* p :	≤ .01; ** <i>p</i>	≤ .001							

25

WHAT COMPLETENESS LOOKS LIKE

Example C

and &-um prince charming &-uh			
realizes	MS/IE	6	
there is the last lady of the house ,	MS/IE	6	
which the ugly stepmother does not			
want him to try the slipper on her .	MS/A	6	
&-um he actually does try the slipper			
on Cinderella's foot .	Α	6	
and it fits perfectly .	DC	6	
therefore he realizes	MS/DC	6	
that Cinderella was the beautiful lady	MS/DC	6	
			Ep6: EC-
that he met at the ball .	MS/DC	6	MB, MS

Example D

so then in another book the king hadta find the			
wearer of the slipper	NSG		
and then went round the town	IE	4	
and tested	IE	4	
if your [*] foot fit the			Ep4: El-
slipper or not.	IE	4	MB

 $\mathsf{MS} = \mathsf{Mental}\;\mathsf{State}$

IE = Initiating Event

A = Attempt

DC = Direct Consequence NSG = Non-Story Grammar

WHAT ELABORATION LOOKS LIKE

Example C

and &-um prince charming &-uh realizes	MS/IE	6	
there is the last lady of the house ,	MS/IE	6	
which the ugly stepmother does not want him to try the slipper on her .	MS/A	6	
&-um he actually does try the slipper on Cinderella's foot .	A	6	
and it fits perfectly .	DC	6	
therefore he realizes	MS/DC	6	
that Cinderella was the beautiful lady	MS/DC	6	
that he met at the ball .	MS/DC	6	Ep6: EC- MB, MS

Example E

And they (sisters) go out to this dance .	IE	1	Ep1: SI
&-um anyway and then there ends up being this			
[/] this man	IE	2	
who asks her to come .	A	2	
And so he [//] she ends up going to the dance.	DC	2	Ep2: SC

MS = Mental State

IE = Initiating Event

A = Attempt

DC = Direct Consequence

27

DISCUSSION

Associations were found between narrative length, completeness & elaboration within a story grammar framework and...

- 1) Executive functioning: planning, organization
 - ☐ Even more with problem-solving & reasoning
 - Correlations mostly within timepoint
- Declarative memory: memory for people, objects, and events
 - Correlations across timepoints

LIMITATIONS

- Not all participants had data available at both timepoints
- Sample was not diverse in terms of race and ethnicity
- Sample included non-native English speakers

29

FUTURE DIRECTIONS

Conducting regression analyses to determine which (if any) EF & declarative memory scores at 6-months predict narrative outcomes at 12-months

Control for demographic variables

Analyzing mental state term use as one aspect of elaboration

Analyzing changes in story grammar measures across the first 2-years post-TBI (3, 6, 9, 12, 24-months) and comparing performance to controls

Developing methods for efficiently and effectively capturing these narrative impairments to harness their utility in clinical practice

CONCLUSIONS

Findings support the use of story grammar measures to capture the functional impact of persisting EF & declarative memory impairments post-TBI

Developing efficient and effective methods for characterizing narrative impairments may improve clinical assessment & treatment, with the potential for far-reaching impacts on communicative participation & quality of life in this population

31

REFERENCES

- 1) Coelho, C. A. (2002). Story narratives of adults with closed head injury and non-brain-injured adults: Influence of socioeconomic status, elicitation task, and executive functioning. *Journal of Speech, Language, and Hearing Research*, 45(6), 1232-1248.
- Marini, A., Zettin, M., Bencich, E., Bosco, F. M., & Galetto, V. (2017). Severity effects on discourse production after TBI. Journal of Neurolinguistics, 44, 91-106.
- Stout, C., Yorkston, K., & Pimentel, J. (2000). Discourse production following mild, moderate, and severe traumatic brain injury: A comparison of two tasks. *Journal of Medical Speech-Language Pathology*, 8(1), 15-25.
- Galski, T., Tompkins, C., & Johnston, M. V. (1998). Competence in discourse as a measure of social integration and quality of life in persons with traumatic brain injury. Brain injury, 12(9), 769-782.
- 5) Elbourn, E., Kenny, B., Power, E., & Togher, L. (2019). Psychosocial outcomes of severe traumatic brain injury in relation to discourse recovery: a longitudinal study up to 1 year post-injury. American Journal of Speech-Language Pathology, 28(4), 1463-1478.
- Stein, N. L., & Glenn, C. G. (1979). An analysis of story comprehension in elementary school children. In R. O. Freedle (Ed.), New directions in discourse processing (pp. 53-120). Ablex.
- 7) Hartley, L. L., & Jensen, P. J. (1991). Narrative and procedural discourse after closed head injury. *Brain Injury*, 5(3), 267-285.
- Norman, R. S., Mueller, K. D., Huerta, P., Shah, M. N., Turkstra, L. S., & Power, E. (2022). Discourse performance in adults with mild traumatic brain injury, orthopedic injuries, and moderate to severe traumatic brain injury, and healthy controls. *American Journal of Speech-Language Pathology*, 31(1), 67-83.

REFERENCES CONT.

- 9) Carlomango, S., Giannotti, S., Vorano, L., & Marini, A. (2011). Discourse information content in non-aphasic adults with brain injury: A pilot study. Brain Injury, 25(10), 1010-1018.
- Elbourn, E., Kenny, B., Power, E., Honan, C., McDonald, S., Tate, R., Holland, A., MacWhinney, B., & Togher, L. (2019). Discourse recovery after severe traumatic brain injury: Exploring the first year. Brain Injury, 33(2), 143-159.
- 11) Marini, A., Galetto, V., Zampieri, E., Vorano, L., Zettin, M., & Carlomagno, S. (2011). Narrative language in traumatic brain injury. *Neuropsychologia*, 49, 2904-2910.
- 12) Marini, A., Zettin, M., & Galetto, V. (2014) Cognitive correlates of narrative impairment in moderate traumatic brain injury. Neuropsychologia, 64, 282-288.
- 13) Mozeiko, J., Le, K., Coelho, C., Krueger, F., & Grafman, J. (2011). The relationship of story grammar and executive function following TBI. Aphasiology, 25(6-7), 826-835.
- 14) Gillam, S. L., Gilliam, R. B., Fargo, J. D., Olszewski, A., & Segura, H. (2017). Monitoring Indicators of Scholarly Language: A progress-monitoring instrument for measuring narrative discourse skills. Communication Disorders Quarterly, 38(2), 96-106.
- McDonald, S. (2005). Functional Assessment of Verbal Reasoning and Executive Strategies. CCD Publishing.
- 16) Brandt, J., & Benedict, R. H. B. (197). Hopkins Verbal Learning Test Revised. Psychological Assessment Resources, Inc.
- 17) Benedict, R. H. B. (1997). Brief Visuospatial Memory Test Revised. Psychological Assessment Resources, Inc.